Factorization of Kazhdan–Lusztig elements for Grassmanians

نویسندگان

  • Alexander Kirillov
  • Alain Lascoux
چکیده

We show that the Kazhdan-Lusztig basis elements Cw of the Hecke algebra of the symmetric group, when w ∈ Sn corresponds to a Schubert subvariety of a Grassmann variety, can be written as a product of factors of the form Ti + fj(v), where fj are rational functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dual Canonical and Kazhdan-lusztig Bases and 3412, 4231-avoiding Permutations

Using Du’s characterization of the dual canonical basis of the coordinate ring O(GL(n,C)), we express all elements of this basis in terms of immanants. We then give a new factorization of permutations w avoiding the patterns 3412 and 4231, which in turn yields a factorization of the corresponding Kazhdan-Lusztig basis elements C w(q) of the Hecke algebra Hn(q). Using the immanant and factorizat...

متن کامل

Special matchings and Kazhdan-Lusztig polynomials

In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these pol...

متن کامل

A Factorization Theorem for Affine Kazhdan-lusztig Basis Elements

The lowest two-sided cell of the extended affine Weyl group We is the set {w ∈ We : w = x · w0 · z, for some x, z ∈ We}, denoted W(ν). We prove that for any w ∈ W(ν), the canonical basis element C w can be expressed as 1 [n]!χλ(Y )C ′ v1w0 C w0v2 , where χλ(Y ) is the character of the irreducible representation of highest weight λ in the Bernstein generators, and v1 and v −1 2 are what we call ...

متن کامل

Embedded Factor Patterns for Deodhar Elements in Kazhdan-Lusztig Theory

The Kazhdan-Lusztig polynomials for finite Weyl groups arise in the geometry of Schubert varieties and representation theory. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar [16] has given a framework for computing the Kazhdan-Lusztig polynomials which generally invo...

متن کامل

Leading Coefficients of Kazhdan–lusztig Polynomials for Deodhar Elements

We show that the leading coefficient of the Kazhdan–Lusztig polynomial Px,w(q) known as μ(x,w) is always either 0 or 1 when w is a Deodhar element of a finite Weyl group. The Deodhar elements have previously been characterized using pattern avoidance in [BW01] and [BJ07]. In type A, these elements are precisely the 321-hexagon avoiding permutations. Using Deodhar’s algorithm [Deo90], we provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998